Related Articles
New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery.
Adv Drug Deliv Rev. 2010 Mar 18;62(4-5):547-59
Authors: Sosnik A, Carcaboso AM, Glisoni RJ, Moretton MA, Chiappetta DA
Tuberculosis (TB) is the second most deadly infectious disease. Despite potentially curative pharmacotherapies being available for over 50 years, the length of the treatment and the pill burden can hamper patient lifestyle. Thus, low compliance and adherence to administration schedules remain the main reasons for therapeutic failure and contribute to the development of multi-drug-resistant (MDR) strains. Pediatric patients constitute a high risk population. Most of the first-line drugs are not commercially available in pediatric form. The design of novel antibiotics attempts to overcome drug resistance, to shorten the treatment course and to reduce drug interactions with antiretroviral therapies. On the other hand, the existing anti-TB drugs are still effective. Overcoming technological drawbacks of these therapeutic agents as well as improving the effectiveness of the drug by targeting the infection reservoirs remains the central aims of Pharmaceutical Technology. In this framework, nanotechnologies appear as one of the most promising approaches for the development of more effective and compliant medicines. The present review thoroughly overviews the state-of-the-art in the development of nano-based drug delivery systems for encapsulation and release of anti-TB drugs and discusses the challenges that are faced in the development of a more effective, compliant and also affordable TB pharmacotherapy.
PMID: 19914315 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Nanotechnological approaches against Chagas disease.
Adv Drug Deliv Rev. 2010 Mar 18;62(4-5):576-88
Authors: Romero EL, Morilla MJ
Over several thousand years, the flagellated Trypanosome cruzi-causative agent of Chagas disease-developed a complex life cycle between the reduviidae vectors and its human hosts. Due to their silent and hidden location, the intracellular amastigotes are mainly responsible for the nearly 50,000 annual deaths caused by the chronic chagasic cardiomyopathy. Chagas disease is the most important parasitic disease in the Americas, though treatments have not evolved towards a more efficient pharmacotherapy that (i) eradicates the scarce amastigotes present at the indeterminate/chronic form and (ii) employs less toxic drugs than benznidazole or nifurtimox. Nano-drug delivery systems (nanoDDS) represent useful means to selectively deliver the drug to intracellular targets. However, preclinical research in Chagas must be extended in order to improve the chances of a clinical implementation. The stages involved in this process are (i) selection of the appropriate drug for a specific parasite, (ii) development of a drug-loaded nanoDDS structure that displays the adequate pharmacokinetics, biodistribution and intracellular transit and (iii) selection of the right parasite form to target and the right stage of the disease for the treatment to be started. In this review we will critically overview the few research works published in the last 20years in the context of nanotechnology and Chagas diseases and highlight the gaps in knowledge towards the design of more efficient medicines to address this endemic.
PMID: 19941920 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Pulmonary Targeting of Nanoparticle Drug Matrices.
J Aerosol Med Pulm Drug Deliv. 2010 May 10;
Authors: Dandekar P, Venkataraman C, Mehra A
Abstract Background: Nanoparticle drug matrices using lipids or liposomes, with diameters of 40-300 nm, have recently been developed to encapsulate drugs like Insulin, Budesonide, and Rifampicin for pulmonary delivery raising interest in their regional lung deposition. Methods: Lung deposition has so far been modeled using a one-dimensional transport equation, with or without moving airway boundaries, and a lumped deposition term for particle diffusion, sedimentation, and impaction. Here, a two-dimensional transport model has been developed with an explicit treatment of radial diffusion, the primary mechanism for nanoparticle deposition. Regional lung deposition was calculated using Weibel's whole lung model geometry during normal breathing and medical inhalation cycles. Conclusions: Model predictions agree well with measurements of total and pulmonary lung deposition for particles of 10 nm to 10 mum, with earlier models incorporating moving boundaries and aerosol dynamics, and with the reported regional lung deposition of inhaled dry powder insulin. To simulate medical inhalation, the model was run with inhalation times from 2-6 sec and breath hold from 0-10 sec. A high and relatively invariant pulmonary deposition fraction between 70 and 95% was predicted for a broad nanoparticle size range (50-200 nm) for inhalation cycles with breathing rate between 500 and 2000 cm(3) sec(-1) and breath hold of 5-10 sec. Thus, nanoparticles may be able to deliver consistent lung doses, over modest breath hold periods, even with intrapatient variability in breathing rate. A linearized nomogram was provided as a heuristic for design of nanoparticle drug matrices to target the pulmonary lung.
PMID: 20455773 [PubMed - as supplied by publisher]
]]>View the Original article
Related Articles
Design of a dual-ligand system using a specific ligand and cell penetrating peptide, resulting in a synergistic effect on selectivity and cellular uptake.
Int J Pharm. 2010 May 8;
Authors: Takara K, Hatakeyama H, Ohga N, Hida K, Harashima H
In this study, a dual-ligand liposomal system comprised of a specific ligand and a cell penetrating peptide (CPP) is described to enhance selectivity and cellular uptake. Dual-ligand PEGylated liposomes were prepared by modifying the end of the PEG with an NGR motif peptide, followed by a surface coating of the liposomes with stearylated oligoarginine (STR-RX). The NGR motif recognizes CD13, a marker protein located on tumor endothelial cells. A suitable number of RX units was determined to be R4, since it can be masked by the PEG aqueous layer. Although no enhanced cellular uptake was observed when a single modification of PEGylated liposomes with either NGR- or STR-R4 was used, the dual-modification with NGR and STR-R4 stimulated uptake of PEGylated liposomes by CD13 positive cells, and this uptake was superior to that obtained by PEG-unmodified liposomes modified with STR-R4. The dual-ligand system shows a synergistic effect on cellular uptake. Collectively, the dual-ligand system promises to be useful in the development efficient and specific drug delivery systems.
PMID: 20457236 [PubMed - as supplied by publisher]
]]>View the Original article
Related Articles
Liposomes as delivery systems for nasal vaccination: strategies and outcomes.
Expert Opin Drug Deliv. 2010 May 12;
Authors: Heurtault B, Frisch B, Pons F
Importance of the field: Among the particulate systems that have been envisaged in vaccine delivery, liposomes are very attractive. These phospholipid vesicles can indeed deliver a wide range of molecules. They have been shown to enhance considerably the immunogenicity of weak protein antigens or synthetic peptides. Also, they offer a wide range of pharmaceutical options for the design of vaccines. In the past decade, the nasal mucosa has emerged as an effective route for vaccine delivery, together with the opportunity to develop non-invasive approaches in vaccination. Areas covered in this review: This review focuses on the recent strategies and outcomes that have been developed around the use of liposomes in nasal vaccination. What the reader will gain: The various formulation parameters, including lipid composition, size, charge and mucoadhesiveness, that have been investigated in the design of liposomal vaccine candidates dedicated to nasal vaccination are outlined. Also, an overview of the immunological and protective responses obtained with the developed formulations is presented. Take home message: This review illustrates the high potential of liposomes as nasal vaccine delivery systems.
PMID: 20459361 [PubMed - as supplied by publisher]
]]>View the Original article
Related Articles
Multi-functional nanoparticles delivering siRNA and doxorubicin overcome drug resistance in cancer.
J Biol Chem. 2010 May 11;
Authors: Chen Y, Bathula SR, Li J, Huang L
Drug resistance is a major challenge to the effective treatment of cancer. We have developed two nanoparticle formulations cationic liposome polycation DNA (LPD) and anionic liposome polycation DNA (LPD II) for systemic codelivery of doxorubicin (Dox) and a therapeutic siRNA to multiple drug resistance (MDR) tumors. In this study, we have provided four strategies to overcome drug resistance. First, we formed the LPD nanoparticles with a guanidinium containing cationic lipid, i.e. DSAA which can induce reactive oxygen species (ROS), down regulate MDR transporter expression and increase Dox uptake. Second, to block angiogenesis and increase drug penetration, we have further formulated LPD nanoparticles to co deliver vascular endothelial growth factor (VEGF) siRNA and Dox. An enhanced Dox uptake and therapeutic effect were observed when combined with VEGF siRNA in the nanoparticles. Third, to avoid Pgp mediated drug efflux, we further designed another delivery vehicle, LPD II, which showed much higher entrapment efficiency of Dox than LPD. Finally, we delivered a therapeutic siRNA to inhibit MDR transporter. We demonstrated the first evidence of c Myc siRNA delivered by the LPD II nanoparticles down-regulating MDR expression and increasing Dox uptake in vivo. Three daily intravenous injections of therapeutic siRNA and Dox (1.2 mg/kg) coformulated in either LPD or LPD II nanoparticles showed a significant improvement in tumor growth inhibition. This study highlights a potential clinical use for the multifunctional nanoparticles with an effective delivery property and a function to overcome drug resistance in cancer. The activity and the toxicity of LPD and LPD II mediated therapy are compared.
PMID: 20460382 [PubMed - as supplied by publisher]
]]>View the Original article
Related Articles
Comparison between a multifunctional envelope-type nano device and lipoplex for delivery to the liver.
Biol Pharm Bull. 2010;33(5):926-9
Authors: Yamauchi J, Hayashi Y, Kajimoto K, Akita H, Harashima H
The utility of using a multifunctional envelope-type nano device (MEND) for delivering a gene to the liver was examined. Lipotrust, a commercially available transfection reagent whose lipid composition is DC6- 14 :DOPE: cholesterol=4 : 3 : 3, was used as a reference. When Lipotrust was administrated intravenously, luciferase activity of the lung was 25 times higher than that of the liver. The luciferase activity of the lung was greatly reduced when a MEND was administered, even though the lipid composition of the lipid envelope was the same in both devices. Furthermore, the luciferase activity of the liver was 5 times higher than that for lipotrust, suggesting that the encapsulation of plasmid DNA (pDNA) in liposomes is more advantageous for delivering pDNA to the liver than complex formation. The isolation of parenchymal cells (PCs) and non-parenchymal cells (NPCs) showed that the MEND system is capable of expressing the luciferase protein more preferentially in NPCs than the lipoplex system. In addition, when the surface was modified with a pH-sensitive fusogenic peptide (GALA) used as a device for endosomal escape, overall liver luciferase activity was greatly enhanced. This suggests that endosomal escape is a limiting step for the MEND system. In the case of the GALA-modified MEND, the luciferase activity of PCs and NPCs was 18 times and 11 times higher than MEND system, while the transfection efficiency of NPCs was significantly higher compared to that of PCs. Collectively, these data show that a GALA-modified MEND prepared with DC6-14 :DOPE: cholesterol represents a promising device for NPCtargeting gene delivery in vivo.
PMID: 20460780 [PubMed - in process]
]]>View the Original article
Related Articles
Strategies for in vivo delivery of siRNAs: recent progress.
BioDrugs. 2010 Jun;24(3):195-205
Authors: Higuchi Y, Kawakami S, Hashida M
RNA interference (RNAi) is a post-transcriptional gene-silencing mechanism that involves the degradation of messenger RNA in a highly sequence-specific manner. Double-stranded small interfering RNA (siRNA), consisting of 21-25 nucleotides, can induce RNAi and inhibit the expression of target proteins. Therefore, siRNA is considered a promising therapeutic for treatment of a variety of diseases, including genetic and viral diseases, and cancer. Clinical trials of siRNA are ongoing or have been planned, although some issues need to be addressed. For example, cellular uptake of naked siRNA is extremely low due to its polyanionic nature. Furthermore, siRNA is easily degraded by enzymes in blood, tissues, and cells. Several types of chemically modified siRNA have been produced and investigated to improve stability; these have involved modification of the siRNA backbone, the sugar moiety, and the nucleotide bases of antisense and/or sense strands. Because the accumulation at the target site after administration is extremely low, even if stability is improved, an effective delivery system is required to induce RNAi at the site of action. Delivery strategies can be categorized into physical methods, conjugation methods, and drug delivery system carrier-mediated methods. Physical techniques can enhance siRNA uptake at a specific tissue site using electroporation, pressure, mechanical massage, etc. Terminal modification of siRNAs can enhance their resistance to degradation by exonucleases in serum and tissue. Moreover, modification with a suitable ligand can achieve targeted delivery. Several types of carrier for drug delivery have been developed for siRNA in addition to traditional cationic liposome and cationic polymer systems. Ultrasound and microbubbles or liposomal bubbles have also been used in combination with a carrier for siRNA delivery. New materials with unique characteristics such as carbon nanotubes, gold nanoparticles, and gold nanorods have attracted attention as innovative carriers for siRNA.
PMID: 20462284 [PubMed - in process]
]]>View the Original article
Related Articles
Enhancement of cisplatin sensitivity in lewis lung carcinoma by liposome-mediated delivery of a survivin mutant.
J Exp Clin Cancer Res. 2010 May 12;29(1):46
Authors: Yu DD, Wang CT, Shi HS, Li ZY, Pan L, Yuan QZ, Leng F, Wen Y, Chen X, Wei YQ
ABSTRACT: BACKGROUND: A high concentration of cisplatin (CDDP) induces apoptosis in many tumor cell lines. CDDP has been administered by infusion to avoid severe toxicity. Recently, it has been reported that changes in survivin expression or function may lead to tumor sensitization to chemical and physical agents. The aim of this study was to determine whether a dominant-negative mouse survivin mutant could enhance the anti-tumor activity of CDDP. METHODS: A plasmid encoding the phosphorylation-defective dominant-negative mouse survivin threonine 34->alanine mutant (survivin T34A) complexed to a DOTAP-chol liposome (Lip-mS) was administered with or without CDDP in Lewis Lung Carcinoma (LLC) cells and in mice bearing LLC tumors, and the effects on apoptosis, tumor growth and angiogenesis were assessed. Data were analyzed using one-way analysis of variance(ANOVA), and a value of P<0.05 was considered to be statistically significant. RESULTS: LLC cells treated with a combination of Lip-mS and CDDP displayed increased apoptosis compared with those treated with Lip-mS or CDDP alone. In mice bearing LLC tumors and treated with intravenous injections of Lip-mS and/or CDDP, combination treatment significantly reduced the mean tumor volume compared with either treatment alone. Moreover, the antitumor effect of Lip-mS combined with CDDP was greater than their anticipated additive effects. CONCLUSION: These data suggest that the dominant-negative survivin mutant, survivin T34A, sensitized LLC cells to chemotherapy of CDDP. The synergistic antitumor activity of the combination treatment may in part result from an increase in the apoptosis of tumor cells, inhibition of tumor angiogenesis and induction of a tumor-protective immune response.
PMID: 20462440 [PubMed - as supplied by publisher]
]]>View the Original article
Related Articles
Microporation is a valuable transfection method for efficient gene delivery into human umbilical cord blood-derived mesenchymal stem cells.
BMC Biotechnol. 2010 May 13;10(1):38
Authors: Lim JY, Park SH, Jeong CH, Oh JH, Kim SM, Ryu CH, Park SA, Ahn JG, Oh W, Jeun SS, Chang JW
ABSTRACT: BACKGROUND: Mesenchymal stem cells (MSCs) are an attractive source of adult stem cells for therapeutic application in clinical study. Genetic modification of MSCs with beneficial genes makes them more effective for therapeutic use. However, it is difficult to transduce genes into MSCs by common transfection methods, especially nonviral methods. In this study, we applied microporation technology as a novel electroporation technique to introduce enhanced green fluorescent protein (EGFP) and brain-derived neurotropfic factor (BDNF) plasmid DNA into human umbilical cord blood-derived MSCs (hUCB-MSCs) with significant efficiency, and investigated the stem cell potentiality of engineered MSCs through their phenotypes, proliferative capacity, ability to differentiate into multiple lineages, and migration ability towards malignant glioma cells. RESULTS: Using microporation with EGFP as a reporter gene, hUCB-MSCs were transfected with higher efficiency (83%) and only minimal cell damage than when conventional liposome-based reagent (<20%) or established electroporation methods were used (30-40%). More importantly, microporation did not affect the immunophenotype of hUCB-MSCs, their proliferation activity, ability to differentiate into mesodermal and ectodermal lineages, or migration ability towards cancer cells. In addition, the BDNF gene could be successfully transfected into hUCB-MSCs, and BDNF expression remained fairly constant for the first 2 weeks in vitro and in vivo. Moreover, microporation of BDNF gene into hUCB-MSCs promoted their in vitro differentiation into neural cells. CONCLUSION: Taken together, the present data demonstrates the value of microporation as an efficient means of transfection of MSCs without changing their multiple properties. Gene delivery by microporation may enhance the feasibility of transgenic stem cell therapy.
PMID: 20462460 [PubMed - as supplied by publisher]
]]>View the Original article
Related Articles
Delivery of zoledronic acid encapsulated in folate-targeted liposomes results in potent in vitro cytotoxic activity on tumor cells.
J Control Release. 2010 May 9;
Authors: Shmeeda H, Amitay Y, Gorin J, Tzemach D, Mak L, Ogorka J, Kumar S, Zhang JA, Gabizon A
INTRODUCTION: Zoledronic acid (ZOL), a nitrogen-containing bisphosphonate, is a potent inhibitor of farnesyl-pyrophosphate synthase with poor in vitro cytotoxic activity as a result of its limited diffusion into tumor cells. The purpose of this study was to investigate whether liposomes targeted to the folate receptor (FR) can effectively deliver ZOL to tumor cells and enhance its in vitro cytotoxicity. METHODS: ZOL was entrapped in the water phase of liposomes of various compositions with or without a lipophilic folate ligand. Stability and blood levels after i.v. injection were checked. The in vitro cytotoxic activity and cell uptake of liposomal ZOL (L-ZOL) were examined on various human and mouse cell lines. RESULTS: All formulations were highly stable and resulted in high blood levels in contrast to free ZOL which was rapidly cleared from plasma. Nontargeted L-ZOL was devoid of any in vitro activity at concentrations up to 200microM. In contrast, potent cytotoxic activity of folate-targeted L-ZOL (FTL-ZOL) was observed, with optimal activity, reaching the sub-micromolar range, for dipalmitoyl-phosphatidylglycerol (DPPG)-containing liposomes and relatively lower activity for pegylated (PEG) formulations. IC50 values of FTL-ZOL on FR-expressing tumor cells were >100-fold lower than those of free ZOL. Compared to doxorubicin, the cytotoxicity of DPPG-FTL-ZOL was equivalent in drug-sensitive cell lines, and greatly superior in drug-resistant cell lines. When tested on the non-FR upregulated cell lines, the cytotoxicity of FTL-ZOL was lower but still superior to that of L-ZOL. The uptake of ZOL by FR-expressing tumor cells was enhanced approximately 25-fold with DPPG-FTL-ZOL, and only approximately 4-fold with PEG-FTL-ZOL. CONCLUSIONS: FR targeting of ZOL using liposomes is an effective means to exploit the tumor cell growth inhibitory properties of ZOL. DPPG-FTL-ZOL is significantly more efficient at intracellular delivery of ZOL than PEG-FTL-ZOL in FR-expressing tumor cells.
PMID: 20462513 [PubMed - as supplied by publisher]
]]>View the Original article
Related Articles
Magnetic nanoformulation of azidothymidine 5'-triphosphate for targeted delivery across the blood-brain barrier.
Int J Nanomedicine. 2010;5:157-66
Authors: Saiyed ZM, Gandhi NH, Nair MP
Despite significant advances in highly active antiretroviral therapy (HAART), the prevalence of neuroAIDS remains high. This is mainly attributed to inability of antiretroviral therapy (ART) to cross the blood-brain barrier (BBB), thus resulting in insufficient drug concentration within the brain. Therefore, development of an active drug targeting system is an attractive strategy to increase the efficacy and delivery of ART to the brain. We report herein development of magnetic azidothymidine 5'-triphosphate (AZTTP) liposomal nanoformulation and its ability to transmigrate across an in vitro BBB model by application of an external magnetic field. We hypothesize that this magnetically guided nanoformulation can transverse the BBB by direct transport or via monocyte-mediated transport. Magnetic AZTTP liposomes were prepared using a mixture of phosphatidyl choline and cholesterol. The average size of prepared liposomes was about 150 nm with maximum drug and magnetite loading efficiency of 54.5% and 45.3%, respectively. Further, magnetic AZTTP liposomes were checked for transmigration across an in vitro BBB model using direct or monocyte-mediated transport by application of an external magnetic field. The results show that apparent permeability of magnetic AZTTP liposomes was 3-fold higher than free AZTTP. Also, the magnetic AZTTP liposomes were efficiently taken up by monocytes and these magnetic monocytes showed enhanced transendothelial migration compared to normal/non-magnetic monocytes in presence of an external magnetic field. Thus, we anticipate that the developed magnetic nanoformulation can be used for targeting active nucleotide analog reverse transcriptase inhibitors to the brain by application of an external magnetic force and thereby eliminate the brain HIV reservoir and help to treat neuroAIDS.
PMID: 20463931 [PubMed - in process]
]]>View the Original article
Selective Gene Transfer to Hepatocellular carcinoma Using Homing Peptide-Grafted Cationic Liposomes.
Related Articles
Selective Gene Transfer to Hepatocellular carcinoma Using Homing Peptide-Grafted Cationic Liposomes.
J Microbiol Biotechnol. 2010 Apr;20(4):821-7
Authors: Tu Y, Kim JS
Gene delivery that provides targeted delivery of therapeutic genes to the cells of a lesion enhances therapeutic efficacy and reduces toxic side effects. This process is especially important in cancer therapy when it is advantageous to avoid unwanted damage to healthy, normal cells. Incorporating cancer-specific ligands that recognize receptors overexpressed on cancer cells can increase selective binding and uptake and, as a result, increase targeted transgene expression. In this study, we investigated whether a peptide capable of homing to hepatocellular carcinoma (HCC) could facilitate targeted gene delivery by cationic liposomes. This homing peptide (HBP) exhibited selective binding to a human hepatocarcinoma cell line, HepG2, at a concentration ranging from 5 to 5,000 nM. When conjugated to a cationic liposome, HBP substantially increased cellular internalization of plasmid DNA to increase transgene expression in HepG2 cells. In addition, there was no significant enhancement in gene transfer detected for other human cell lines tested including THLE-3, AD293, and MCF-7 cells. Therefore, we demonstrate that HBP provides targeted gene delivery to HCC by cationic liposomes.
PMID: 20467260 [PubMed - in process]
]]>View the Original article
Related Articles
Biotin-directed assembly of targeted modular lipoplexes and their transfection of human hepatoma cells in vitro.
Drug Deliv. 2010 May 14;
Authors: Singh A, Ariatti M, Singh M, Hawtrey A, Naidoo R
The asialoglycoprotein receptor, which is abundantly and near exclusively expressed on hepatocytes, has received much attention in the design of non-viral hepatotropic DNA delivery systems. Thus, asialoglycoproteins and hexopyranosyl ligands have been coupled to DNA-binding cationic polymers and liposomes in the assembly of complexes intended for uptake by liver parenchymal cells. The aim of the study was to construct a hepatocyte-targeted multimodular liposome-based transfecting complex, in which the biotin-streptavidin interaction provides the cohesive force between the ligand asialorosomucoid and the liposome bilayer, and to evaluate its transfection capabilities in the hepatocyte-derived human transformed cell line HepG2. Dibiotinylated asialoorosomucoid was attached to cationic liposomes constructed from 3beta[N-(N',N'-dimethylaminopropane)-carbamoyl] cholesterol (Chol-T):dioleoylphosphatidylethanolamine:biotinylcholesterylformylhydrazide (MSB1) (48:50:2 mole ratio) through streptavidin interposition. Liposome-pGL3 DNA interactions were studied by gel band shift and ethidium displacement assays. The cytotoxicity of assemblies was evaluated in the HepG2 cell line and transfection capabilities determined by measuring the activity of the transgene luciferase. Binding assays showed that all DNA was liposome associated at a DNA (negative):liposome (positive) charge ratio of 1:1. Accommodation of a streptavidin dibiotinylated asialoorosomucoid assembly was achieved at a DNA:liposome:streptavidin dibiotinylated asialoorosomucoid ratio of 1:4:9 (weight basis). Complexes showed optimal transfection activity at this ratio, which was reduced 10-fold by the presence of the competing ligand asialofetuin. The streptavidin-biotin interaction has been applied for the first time to the assembly of hepatocyte-targeted lipoplexes that display asialoorosomucoid and that are well tolerated by a human hepatoma cell line in which transfection is demonstrably achieved by receptor mediation. Favorable size and charge ratio characteristics suggest that this system may be suitable for in vivo application.
PMID: 20469969 [PubMed - as supplied by publisher]
]]>View the Original article
Related Articles
Dressing liposomal particles with chitosan and poly(vinylic alcohol) for oral vaccine delivery.
J Liposome Res. 2010 May 17;
Authors: Rescia VC, Takata CS, de Araujo PS, Bueno da Costa MH
Liposomes have been used as adjuvants since 1974. One major limitation for the use of liposomes in oral vaccines is the lipid structure instability caused by enzyme activities. Our aim was to combine liposomes that could encapsulate antigens (i.e., Dtxd, diphtheria toxoid) with chitosan, which protects the particles and promotes mucoadhesibility. We employed physical techniques to understand the process by which liposomes (SPC: Cho, 3:1) can be sandwiched with chitosan (Chi) and stabilized by PVA (poly-vinylic alcohol), which are biodegradable, biocompatible polymers. Round, smooth-surfaced particles of REVs-Chi (reversed-phase vesicles sandwiched by Chi) stabilized by PVA were obtained. The REVs encapsulation efficiencies (Dtxd was used as the antigen) were directly dependent on the Chi and PVA present in the formulation. Chi adsorption on the REVs surface was accompanied by an increase of zeta-potential. In contrast, PVA adsorption on the REVs-Chi surface was accompanied by a decrease of zeta-potential. The presence of Dtxd increased the Chi surface-adsorption efficiency. The PVA affinity by mucine was 2,000 times higher than that observed with Chi alone and did not depend on the molecule being in solution or adsorbed on the liposomal surface. The liberation of encapsulated Dtxd was retarded by encapsulation within REVs-Chi-PVA. These results lead us to conclude that these new, stabilized particles were able to be adsorbed by intestinal surfaces, resisted degradation, and controlled antigen release. Therefore, REVs-Chi-PVA particles can be used as an oral delivery adjuvant.
PMID: 20470223 [PubMed - as supplied by publisher]
]]>View the Original article
Related Articles
Applications of novel drug delivery system for herbal formulations.
Fitoterapia. 2010 May 12;
Authors: Ajazuddin , Saraf S
Over the past several years, great advances have been made on development of novel drug delivery systems (NDDS) for plant actives and extracts. The variety of novel herbal formulations like polymeric nanoparticles, nanocapsules, liposomes, phytosomes, nanoemulsions, microsphere, transferosomes, and ethosomes have been reported using bioactive and plant extracts. The novel formulations reported to have remarkable advantages over conventional formulations of plant actives and extracts which includes enhancement of solubility, bioavailability, protection from toxicity, enhancement of pharmacological activity, enhancement of stability, improved tissue macrophages distribution, sustained delivery, protection from physical and chemical degradation. The present review highlights the current status of the development of novel herbal formulations and summarizes their method of preparation, type of active ingredients, size, entrapment efficiency, route of administration, biological activity and applications of novel formulations.
PMID: 20471457 [PubMed - as supplied by publisher]
]]>View the Original article
Related Articles
In vivo evaluation of pH-sensitive polymer-based immunoliposomes targeting the CD33 antigen.
Mol Pharm. 2010 May 17;
Authors: Simard P, Leroux JC
The purpose of this study was to evaluate in vivo a targeted pH-sensitive liposomal formulation tailored to promote the efficient intracellular delivery of 1-beta-D-arabinofuranosylcytosine (ara-C) to human myeloid leukemia cells. Specifically, pH-sensitive immunoliposomes were obtained by anchoring a copolymer of dioctadecyl, N-isopropylacrylamide and methacrylic acid in bilayers of PEGylated liposomes (LP) and by coupling the whole anti-CD33 monoclonal antibody (MAb) or its Fab' fragments. Their pharmacokinetic and biodistribution profiles were assessed in Balb/c and leukemic HL60-bearing immunodepressed (SCID) mice. In naive mice, non-targeted and pH-sensitive Fab'-LP had longer circulation times than LP with whole MAb. In SCID/HL60 (CD33+) mice, the pharmacokinetic and biodistribution profiles of LP and encapsulated ara-C were comparable between non-targeted and pH-sensitive Fab'-LP. In leukemic mice, only pH-insensitive, ara-C-loaded Fab' induced prolonged survival times. The apparent absence of pH-sensitive Fab'-LP effect could be related to lower exposure to ara-C in SCID mice.
PMID: 20476756 [PubMed - as supplied by publisher]
]]>View the Original article
Related Articles
Interventional Therapy of Head and Neck Cancer with Lipid Nanoparticle-carried Rhenium 186 Radionuclide.
J Vasc Interv Radiol. 2010 May 15;
Authors: French JT, Goins B, Saenz M, Li S, Garcia-Rojas X, Phillips WT, Otto RA, Bao A
PURPOSE: Minimally invasive interventional cancer therapy with drug-carrying lipid nanoparticles (ie, liposomes) via convection-enhanced delivery by an infusion pump can increase intratumoral drug concentration and retention while facilitating broad distribution throughout solid tumors. The authors investigated the utility of liposome-carrying beta-emitting radionuclides to treat head and neck cancer by direct intratumoral infusion in nude rats. MATERIALS AND METHODS: Four groups of nude rats were subcutaneously inoculated with human tongue cancer cells. After tumors reached an average size of 1.6 cm(3), the treatment group received an intratumoral infusion of liposomal rhenium 186 ((186)Re) (185 MBq [5 mCi]/cm(3) tumor). Three control groups were intratumorally infused with unlabeled liposomes, unencapsulated (186)Re-perrhenate, or unencapsulated intermediate (186)Re compound ((186)Re-N,N-bis[2-mercaptoethyl]-N',N'-diethyl-ethylenediamine [BMEDA]). In vivo distribution of (186)Re activity was measured by planar gamma-camera imaging. Tumor therapy and toxicity were assessed by tumor size, body weight, and hematology. RESULTS: Average tumor volume in the (186)Re-liposome group on posttreatment day 14 decreased to 87.7% +/- 20.1%, whereas tumor volumes increased to 395.0%-514.4% on average in the other three groups (P< .001 vs (186)Re-liposome). The (186)Re-liposomes provided much higher intratumoral retention of (186)Re activity, resulting in an average tumor radiation absorbed dose of 526.3 Gy +/- 93.3, whereas (186)Re-perrhenate and (186)Re-BMEDA groups had only 3.3 Gy +/- 1.2 and 13.4 Gy +/- 9.2 tumor doses, respectively. No systemic toxicity was observed. CONCLUSIONS: Liposomal (186)Re effectively treated head and neck cancer with minimal side effects after convection-enhanced interventional delivery. These results suggest the potential of liposomal (186)Re for clinical application in interventional therapy of cancer.
PMID: 20478719 [PubMed - as supplied by publisher]
]]>View the Original article
Related Articles
Paramagnetic liposome nanoparticles for cellular and tumour imaging.
Int J Mol Sci. 2010;11(4):1759-76
Authors: Kamaly N, Miller AD
In this review we discuss the development of paramagnetic liposomes incorporating MRI contrast agents and show how these are utilized in cellular imaging in vitro. Bi-functional, bi-modal imaging paramagnetic liposome systems are also described. Next we discuss the upgrading of paramagnetic liposomes into bi-modal imaging neutral nanoparticles for in vivo imaging applications. We discuss the development of such systems and show how paramagnetic liposomes and imaging nanoparticles could be developed as platforms for future multi-functional, multi-modal imaging theranostic nanodevices tailor-made for the combined imaging of early stage disease pathology and functional drug delivery.
PMID: 20480040 [PubMed - in process]
]]>View the Original article
Related Articles
Lipid nanocapsules: a new platform for nanomedicine.
Int J Pharm. 2009 Sep 11;379(2):201-9
Authors: Huynh NT, Passirani C, Saulnier P, Benoit JP
Nanomedicine, an emerging new field created by the fusion of nanotechnology and medicine, is one of the most promising pathways for the development of effective targeted therapies with oncology being the earlier and the most notable beneficiary to date. Indeed, drug-loaded nanoparticles provide an ideal solution to overcome the low selectivity of the anticancer drugs towards the cancer cells in regards to normal cells and the induced severe side-effects, thanks to their passive and/or active targeting to cancer tissues. Liposome-based systems encapsulating drugs are already used in some cancer therapies (e.g. Myocet, Daunoxome, Doxil). But liposomes have some important drawbacks: they have a low capacity to encapsulate lipophilic drugs (even though it exists), they are manufactured through processes involving organic solvents, and they are leaky, unstable in biological fluids and more generally in aqueous solutions for being commercialized as such. We have developed new nano-cargos, the lipid nanocapsules, with sizes below the endothelium fenestration (phi<100 nm), that solve these disadvantages. They are prepared according to a solvent-free process and they are stable for at least one year in suspension ready for injection, which should reduce considerably the cost and convenience for treatment. Moreover, these new nano-cargos have the ability to encapsulate efficiently lipophilic drugs, offering a pharmaceutical solution for their intravenous administration. The lipid nanocapsules (LNCs) have been prepared according to an original method based on a phase-inversion temperature process recently developed and patented. Their structure is a hybrid between polymeric nanocapsules and liposomes because of their oily core which is surrounded by a tensioactive rigid membrane. They have a lipoprotein-like structure. Their size can be adjusted below 100 nm with a narrow distribution. Importantly, these properties confer great stability to the structure (physical stability>18 months). Blank or drug-loaded LNCs can be prepared, with or without PEG (polyethyleneglycol)ylation that is a key parameter that affects the vascular residence time of the nano-cargos. Other hydrophilic tails can also be grafted. Different anticancer drugs (paclitaxel, docetaxel, etoposide, hydroxytamoxifen, doxorubicin, etc.) have been encapsulated. They all are released according to a sustained pattern. Preclinical studies on cell cultures and animal models of tumors have been performed, showing promising results.
PMID: 19409468 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Topical treatment in vitiligo and the potential uses of new drug delivery systems.
Indian J Dermatol Venereol Leprol. 2010 May-Jun;76(3):231-8
Authors: Garg BJ, Saraswat A, Bhatia A, Katare OP
Vitiligo is a psychologically devastating condition. Topical therapy is employed as first-line treatment in localized vitiligo. Currently, several topical agents are available in many forms viz. methoxsalen (solution and cream), trioxsalen (solution), corticosteroids (gel, cream, ointment and solution) and calcineurin inhibitors (ointment and cream). Although topical therapy has an important position in vitiligo treatment, side-effects or poor efficacy affect their utility and patient compliance. Novel drug delivery strategies can play a pivotal role in improving the topical delivery of various drugs by enhancing their epidermal localization with a concomitant reduction in their side-effects and improving their effectiveness. The current review emphasizes the potential of various phospholipid based carriers viz. liposomes, transferosomes, ethosomes, lipid emulsions, solid lipid nanoparticles and organogels in optimizing and enhancing the topical delivery of anti-vitiligo agents, whilst reducing the side effects of drugs commonly used in its topical treatment.
PMID: 20445292 [PubMed - in process]
]]>View the Original article
Related Articles
Transcutol containing vesicles for topical delivery of minoxidil.
J Drug Target. 2010 May 6;
Authors: Mura S, Manconi M, Valenti D, Sinico C, Vila AO, Fadda AM
The aim of this work was to evaluate the ability of Transcutol (Trc) to produce elastic vesicles with soy lecithin (SL) and study the influence of the obtained vesicles on in vitro (trans)dermal delivery of minoxidil. To this purpose, so-called penetration enhancer-containing vesicles (PEVs) were prepared using Trc aqueous solutions (5-10-20-30% v/v) as hydrophilic phase. SL liposomes, without Trc, were used as control. Prepared formulations were characterized in terms of size distribution, morphology, zeta potential, deformability, and rheological behavior. The influence of the obtained PEVs on (trans)dermal delivery of minoxidil was studied by in vitro diffusion experiments through pig skin. Results showed that all prepared PEVs were able to give good entrapment efficiency (E% approximately 67) similar to that of conventional liposomes. Trc-containing PEVs showed to be more deformable than liposomes only when minoxidil was loaded in 5 and 10% Trc-containing vesicles. Rheological studies showed that PEVs have higher fluidity than conventional liposomes. All PEVs showed a higher stability than liposomes as shown by studying zeta potential and size distribution during three months. Results of in vitro diffusion experiments showed that Trc-containing PEVs are able to deliver minoxidil to deep skin layers without any transdermal permeation.
PMID: 20446805 [PubMed - as supplied by publisher]
]]>View the Original article
Related Articles
Cellular endocytosis and gene delivery.
Mol Med. 2010 May-Jun;16(5-6):222-9
Authors: Ziello JE, Huang Y, Jovin IS
Endocytosis is the process by which cells take up macromolecules from the surrounding medium. The best-characterized process is the so-called clathrin-dependent endocytosis, although much is also currently known about clathrin-independent endocytic processes such as those involving caveolae and lipid rafts. An understanding of endocytosis and the cellular trafficking that occurs thereafter has a great deal of relevance to current molecular medicine. Gene therapy, which is presently being investigated for its therapeutic potential in treating immunodeficiency and metabolic diseases, cancer and heart disease, employs a variety of viral and nonviral vectors, which can be delivered to the target cells of the body and are subsequently endocytosed and dissembled. A variety of vectors can be used to deliver genes to organs in vivo or cells ex vivo. Various routes of vector delivery have been investigated. The mechanisms by which vectors such as adenoviruses, adeno-associated viruses, retroviruses and liposomes enter the cell are increasingly being investigated as the effort to increase the efficiency of gene therapy continues. This review focuses on mechanisms of endocytosis and how they relate to the internal trafficking of viral and nonviral vectors in gene therapy.
PMID: 20454523 [PubMed - in process]
]]>View the Original article
Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy.
Related Articles
Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy.
J Oncol. 2010;2010:723798
Authors: Wu HC, Chang DK
Solid tumors are known to recruit new blood vessels to support their growth. Therefore, unique molecules expressed on tumor endothelial cells can function as targets for the antiangiogenic therapy of cancer. Current efforts are focusing on developing therapeutic agents capable of specifically targeting cancer cells and tumor-associated microenvironments including tumor blood vessels. These therapies hold the promise of high efficacy and low toxicity. One recognized strategy for improving the therapeutic effectiveness of conventional chemotherapeutics is to encapsulate anticancer drugs into targeting liposomes that bind to the cell surface receptors expressed on tumor-associated endothelial cells. These anti-angiogenic drug delivery systems could be used to target both tumor blood vessels as well as the tumor cells, themselves. This article reviews the mechanisms and advantages of various present and potential methods using peptide-conjugated liposomes to specifically destroy tumor blood vessels in anticancer therapy.
PMID: 20454584 [PubMed - in process]
]]>View the Original article
Related Articles
Development and characterization of novel carrier gel core liposomes based transmission blocking malaria vaccine.
J Control Release. 2009 Dec 3;140(2):157-65
Authors: Tiwari S, Goyal AK, Mishra N, Khatri K, Vaidya B, Mehta A, Wu Y, Vyas SP
The aim of present work was to investigate the potential utility of novel carrier gel core liposomes for intramuscular delivery of transmission blocking malaria antigen Pfs25 and to evaluate the effect of co-administration of vaccine adjuvant CpGODN on immune enhancement of recombinant protein antigen Pfs25. In the present work we have prepared gel core liposomes containing core of biocompatible polymer poly acrylic acid in phospholipid bilayer by reverse phase evaporation method and characterized for various in vitro parameters. In process stability of the encapsulated antigen was evaluated by SDS-PAGE followed by western blotting. The immune stimulating ability was studied by measuring anti-Pfs25 antibody titer in serum of Balb/c mice following intramuscular administration of various formulations. A Significant and perdurable immune responses was obtained after intramuscular administration of gel core liposomes encapsulated Pfs25 as compared to Pfs25 loaded conventional liposomes. Moreover co-administration of CpGODN in liposomes (conventional and gel core) was found to further increase the immunogenicity of vaccine. The result indicates high potential of gel core liposomes for their use as a carrier adjuvant for intramuscular delivery of recombinant antigen Pfs25 based transmission blocking malaria vaccine.
PMID: 19686788 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Development of a highly stable and targetable nanoliposomal formulation of topotecan.
J Control Release. 2010 Jan 4;141(1):13-21
Authors: Drummond DC, Noble CO, Guo Z, Hayes ME, Connolly-Ingram C, Gabriel BS, Hann B, Liu B, Park JW, Hong K, Benz CC, Marks JD, Kirpotin DB
Topotecan (TPT), a highly active anticancer camptothecin drug, would benefit from nanocarrier-mediated site-specific and intracellular delivery because of a labile lactone ring whose hydrolysis inactivates the drug, poor cellular uptake resulting from both lactone hydrolysis and a titratable phenol hydroxyl, and the schedule-dependency of its efficacy due to its mechanism of action. We have encapsulated topotecan in liposomes using transmembrane gradients of triethylammonium salts of polyphosphate (Pn) or sucroseoctasulfate (SOS). Circulation lifetimes were prolonged, and the rate of drug release in vivo depended on the drug load (T(1/2)=5.4 h vs. 11.2 h for 124 and 260 g TPT/mol PL, respectively) and the nature of intraliposomal drug complexing agent used to stabilize the nanoliposome formulation (T(1/2)=11.2 h vs. 27.3 h for Pn and SOS, respectively). Anti-EGFR and anti-HER2-immunoliposomal formulations dramatically increased uptake of topotecan compared to nontargeted nanoliposomal topotecan and poorly permeable free topotecan in receptor-overexpressing cancer cell lines, with a corresponding increase in cytotoxicity in multiple breast cancer cell lines and improved antitumor activity against HER2-overexpressing human breast cancer (BT474) xenografts. We conclude that stabilization of topotecan in nanoliposomes significantly improves the targetability and pharmacokinetic profile of topotecan, allowing for highly active formulations against solid tumors and immunotargeting to cancer-overexpressing cell surface receptors.
PMID: 19686789 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Conjugation of squalene to acyclovir improves the affinity for biomembrane models.
Int J Pharm. 2009 Dec 1;382(1-2):73-9
Authors: Sarpietro MG, Micieli D, Rocco F, Ceruti M, Castelli F
Differential scanning calorimetry was used to study the interaction of acyclovir and its prodrug squalenoyl-acyclovir (obtained by conjugation of 1,1',2-tris-nor-squalene acid (squaleneCOOH) with acyclovir) with biomembrane models made of DMPC multilamellar vesicles with the aim to verify whether a stronger interaction of the prodrug with respect to the free drug can be obtained. Multilamellar vesicles were prepared in the presence of increasing molar fractions of acyclovir, squaleneCOOH or prodrug and the effect of the compounds on the thermotropic behavior of vesicles was researched, revealing no effect of acyclovir but a strong effect of squaleneCOOH and prodrug. To evaluate if acyclovir, squaleneCOOH and prodrug can be absorbed by the biomembrane model, an experiment was carried out in which the considered compounds were left in contact with the biomembrane model and their eventual uptake was evaluated analyzing the effect on the thermotropic behavior of the biomembrane model. A very small uptake was revealed for all the compounds. To check the potential use of liposomes as a delivery system for the prodrug, the biomembrane models were incubated with liposomes loaded with the compounds and the compounds transferring from the loaded liposomes to the unloaded biomembrane model was followed. The results suggest that liposomes could be used to deliver the squalenoyl-acyclovir to the biomembrane model.
PMID: 19686827 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Anatomic compression caused by high-volume convection-enhanced delivery to the brain.
Neurosurgery. 2009 Sep;65(3):579-85; discussion 585-6
Authors: Valles F, Fiandaca MS, Bringas J, Dickinson P, LeCouteur R, Higgins R, Berger M, Forsayeth J, Bankiewicz KS
OBJECTIVE: Our group has pioneered the use of gadoteridol-loaded liposomes (GDLs) in convection-enhanced delivery (CED) using real-time magnetic resonance imaging (MRI) to visualize the distribution of therapeutic agents in nonhuman primate and canine brains. We have shown that this procedure is highly predictable and safe. In the course of recent studies, however, we noted that infusion of large volumes caused local anatomic alterations, such as ventricular compression, to occur. This article reports our analysis of CED infusions into normal brains and those compromised by tumors and how monitoring the CED infusion with MRI may be helpful in preventing some complications. METHODS: A total of 54 CED infusions using GDLs were performed in 7 canines and 10 nonhuman primates and monitored using real-time MRI. The canines, having brain tumors, received infusions of GDLs as well as a chemotherapeutic agent via CED. The nonhuman primates were normal and received GDL infusions alone. Real-time analysis of the CED infusion was performed, looking for correct catheter position and infusion reflux, leakage, and mass effect. Retrospective analysis allowed assessment of CED volume of distribution versus volume of infusion. RESULTS: Approximately 10% of these infusions caused anatomic compression of the ventricles, especially in the canines with tumors. Reflux along the cannula and leakage of infusate into the ventricular cerebrospinal fluid or subarachnoid space were seen. Animal behavior, however, did not appear to be affected acutely or during the course of the study, and no ventricular compression was noted 2 weeks after the CED infusion on further brain imaging studies. CONCLUSION: These findings illustrate the value of being able to monitor infusions with real-time MRI to identify phenomena such as reflux along the cannula, leakage of infusate, and ventricular compression. Especially in tumor patients, the latter could be associated with morbidity.
PMID: 19687704 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Nanocarriers in ocular drug delivery: an update review.
Curr Pharm Des. 2009;15(23):2724-50
Authors: Wadhwa S, Paliwal R, Paliwal SR, Vyas SP
Controlled drug delivery to eye is one of the most challenging fields of pharmaceutical research. Low drug-contact time and poor ocular bioavailability due to drainage of solution, tear turnover and its dilution or lacrimation are the problems associated with conventional systems. In addition, anatomical barriers and physiological conditions of eye are also important parameters which control designing of drug delivery systems. Nanosized carriers like micro/nano-suspensions, liposome, niosome, dendrimer, nanoparticles, ocular inserts, implants, hydrogels and prodrug approaches have been developed for this purpose. These novel systems offer manifold advantages over conventional systems as they increase the efficiency of drug delivery by improving the release profile and also reduce drug toxicity. Conventional delivery systems get diluted with tear, washed away through the lacrimal gland and usually require administering at regular time intervals whereas nanocarriers release drug at constant rate for a prolonged period of time and thus enhance its absorption and site specific delivery. This review presents an overview of the various aspects of the ocular drug delivery, with special emphasis on nanocarrier based strategies, including structure of eye, its barriers, delivery routes and the challenges/limitations associated with development of novel nanocarriers. The recent progresses in therapy of ocular disease like gene therapy have also been included so that future options should also be considered from the delivery point of view. Recent progress in the delivery of proteins and peptides via ocular route has also been incorporated for reader benefit.
PMID: 19689343 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Undulating tubular liposomes through incorporation of a synthetic skin ceramide into phospholipid bilayers.
Langmuir. 2009 Sep 15;25(18):10422-5
Authors: Xu P, Tan G, Zhou J, He J, Lawson LB, McPherson GL, John VT
Nonspherical liposomes were prepared by doping L-alpha-phosphatidylcholine (PC) with ceramide VI (a skin lipid). Cryo-transmission electron microscopy shows the liposome shape changing from spherical to an undulating tubular morphology, when the amount of ceramide VI is increased. The formation of tubular liposomes is energetically favorable and is attributed to the association of ceramide VI with PC creating regions of lower curvature. Since ceramides are the major component of skin lipids in the stratum corneum, tubular liposomes containing ceramide may potentially serve as self-enhanced nanocarriers for transdermal delivery.
PMID: 19694462 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Evaluation of pharmacokinetics of 111In-labeled VNB-PEGylated liposomes after intraperitoneal and intravenous administration in a tumor/ascites mouse model.
Cancer Biother Radiopharm. 2009 Aug;24(4):453-60
Authors: Lin YY, Li JJ, Chang CH, Lu YC, Hwang JJ, Tseng YL, Lin WJ, Ting G, Wang HE
Nanoliposomes are important drug carriers that can passively target tumor sites by the enhanced permeability and retention (EPR) effect in neoplasm lesions. This study evaluated the biodistribution and pharmacokinetics of 111In-labeled vinorelbine (VNB)-encapsulated PEGylated liposomes (IVNBPL) after intraperitoneal (i.p.) and intravenous (i.v.) administration in a C26/tk-luc colon carcinoma ascites mouse model. IVNBPL was prepared by labeling VNB-encapsulated PEGylated liposomes with 111In-oxine. BALB/c mice were i.p. inoculated with 2 x 10(5) C26/tk-luc cells in 500 muL of phosphate-buffered saline. Peritoneal tumor lesions were confirmed by 124I-FIAU/micro-PET (positron emission tomography) and bioluminescence imaging. Ascites production was examined by ultrasound imaging on day 10 after tumor cell inoculation. The pharmacokinetics and biodistribution studies of IVNBPL in a tumor/ascites mouse model were conducted. The labeling efficiency was more than 90%. The in vitro stability in human plasma at 37 degrees C for 72 hours was 83% +/- 3.5%. For i.p. administration, the areas under curves (AUCs) of ascites and tumor were 6.78- and 1.70-fold higher, whereas the AUCs of normal tissues were lower than those via the i.v. route. This study demonstrates that i.p. administration is a better approach than i.v. injection for IVNBPL, when applied to the treatment of i.p. malignant disease in a tumor/ascites mouse model.
PMID: 19694580 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Uptake of apolipoprotein E fragment coupled liposomes by cultured brain microvessel endothelial cells and intact brain capillaries.
J Drug Target. 2009 Sep;17(8):610-8
Authors: Hülsermann U, Hoffmann MM, Massing U, Fricker G
The suitability of surface modified liposomes as drug carriers for brain-specific targeting was investigated using apolipoprotein E fragments as brain-directed vectors. Liposomes coated with polyethylene glycol-2000 (sterically stabilized, PEGylated liposomes) were prepared from hydrogenated egg phosphatidylcholine, cholesterol, and a PEG-derivatized phospholipid. Liposomes were covalently coupled to a peptide of 26 amino acids length, derived from the binding site of human apolipoprotein E4 (ApoE4) and a peptide of random amino acid sequence, respectively. Rhodamine-labeled dipalmitoylphosphatidylethanolamine was incorporated into the lipid bilayer in order to visualize the liposomal interaction with brain capillary endothelial cell monolayers. The interaction of the liposomes with monolayers of porcine brain capillary endothelial cells (BCEC), the rodent cell line RBE4, and freshly isolated porcine brain capillaries was studied by means of confocal laser scanning fluorescence microscopy. In contrast to random peptide coupled liposomes, the ApoE4-fragment coupled liposomes were rapidly taken up by cultured BCECs and RBE4 cells. Uptake could be inhibited by ApoE4, free peptide, and antibodies against the LDL receptor in a concentration-dependent manner. The results indicate that the liposomes are internalized via the LDL receptor, which is expressed at the blood-brain barrier. In conclusion, liposomes coupled to ApoE4 fragments are taken up into brain endothelium via an endocytotic pathway and may therefore be a suitable carrier for drug delivery to the brain.
PMID: 19694613 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Vascular targeting by EndoTAG-1 enhances therapeutic efficacy of conventional chemotherapy in lung and pancreatic cancer.
Int J Cancer. 2010 Mar 1;126(5):1235-45
Authors: Eichhorn ME, Ischenko I, Luedemann S, Strieth S, Papyan A, Werner A, Bohnenkamp H, Guenzi E, Preissler G, Michaelis U, Jauch KW, Bruns CJ, Dellian M
Cationic lipid complexed paclitaxel (EndoTAG-1) is a novel vascular targeting agent for the treatment of cancer. Here, the aim was to investigate intratumoral drug distribution after EndoTAG-1 therapy and analyze the impact of EndoTAG-1 scheduling on antitumoral efficacy. The therapeutic effect of EndoTAG-1 in combination with conventional gemcitabine or cisplatin therapy was evaluated in L3.6pl orthotopic pancreatic cancer and a subcutaneous Lewis lung (LLC-1) carcinoma model. Oregon Green paclitaxel encapsulated in cationic liposomes in combination with intravital fluorescence microscopy clearly exhibited delivery of the drug by EndoTAG-1 to the tumor endothelium, whereas Oregon Green paclitaxel dissolved in cremophor displayed an interstitial distribution pattern. The therapeutic efficacy of EndoTAG-1 was critically dependent on the application schedule with best therapeutic results using a metronomic rather than a maximum tolerated dose application sequence. The combination of EndoTAG-1 therapy and cytotoxic chemotherapy significantly enhanced antitumoral efficacy in both tumor models. Interestingly, only EndoTAG-1 in combination with gemcitabine was able to inhibit the incidence of metastasis in pancreatic cancer. In conclusion, vascular targeting tumor therapy by EndoTAG-1 combined with standard small molecular chemotherapy results in markedly enhanced antitumoral efficacy. Therefore, this combination represents a promising novel strategy for clinical cancer therapy.
PMID: 19697323 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Development and characterization of minoxidil-loaded liposomal system for delivery to pilosebaceous units.
J Liposome Res. 2010 Jun;20(2):105-14
Authors: Jain B, Singh B, Katare OP, Vyas SP
The current study aimed to deliver minoxidil (2,4-diamino-6-piperidinopyrimidine 3-oxide; MXD), a potent hypertrichotic agent, into the pilosebaceous units, exploring the potential of the liposomal system. MXD-loaded liposomes of different compositions were prepared by a thin-film hydration technique and subsequently characterized for various vesicle-specific attributes (i.e., size, shape, lamellarity, and entrapment efficiency). Comparative analysis among these compositions was conducted with reference to their vesicle-specific parameters, drug deposition, and drug-delivery mechanism toward pilosebaceous units. The latter may bring about a distinct change in MXD therapy for various ailments related to pilosebaceous units, such as alopecia. The in vitro drug release, ex vivo skin permeation, and drug-retention behavior of the prepared formulation were evaluated by employing rat skin (normal as well as pilosebaceous free) and semipermeable membrane. The results revealed that the neutral liposomes (mean vesicle size, 3.83 +/- 0.18 microm) showed maximum drug deposition in the pilosebaceous units among all the other tested formulations. A quantitative estimation of pilosebaceous delivery revealed that the concentration of MXD in each pilosebaceous unit decreased in the following order: neutral liposomal formulation (5.8 x 10(3) to 7.25 x 10(3) microg) > positively charged liposomal formulation (4.7 x 10(3) to 5.87 x 10(3) microg) > negatively charged liposomal formulation (4.2 x 10(3) to 5.25 x 10(3) microg) > nonliposomal formulation (1.6 x 10(3) to 2.0 x 10(3) microg). Stability studies construed the need to store the liposomal formulation at lower temperatures. The results of the current work indicate that the neutral liposomes can deliver the drug molecules into pilosebaceous units more effectively than the other studied formulations.
PMID: 19698000 [PubMed - in process]
]]>View the Original article
Related Articles
Impact of chitosan coating of anionic liposomes on clearance rate, mucosal and systemic immune responses following nasal administration in rabbits.
Colloids Surf B Biointerfaces. 2009 Nov 1;74(1):225-9
Authors: Amin M, Jaafari MR, Tafaghodi M
Liposomes have been identified as effective immunological adjuvants and have potential for the intranasal and oral delivery of protein antigen. Anionic MLV liposomes were prepared by dehydration-rehydration method. For coating, liposomes were incubated in chitosan solution. Efficiency of coating was confirmed by the evaluation of FITC-labelled chitosan-coated liposomes using a fluorescent microscope. Liposomes morphology and size were studied by optical microscope and size analyzer. Mucoadhesion potential of liposomes was evaluated in human nose by gamma-scintigraphy using (99m)Tc-labelled liposomes. Rabbits (4 animals per group) were nasally immunized in weeks 0, 2 and 4 by liposomes encapsulated with 40 Lf TT. Bleedings and lavage collections were taken place in weeks 3 and 6, and IgG and sIgA titers were measured by ELISA method. Liposomes had a mean diameter of 2.38 microm. Loading of TT was 58.7+/-12.4%. The mucoadhesion (clearance rate from nose) of both coated and non-coated liposomes was similar (P>0.05). Among the immunized animals, the highest nasal lavage sIgA titers were seen in non-coated liposomes followed by coated ones. The serum IgG titers (2nd bleeding) in animals immunized by both kinds of liposome were similar (P>0.05), and were lower than the TT solution group (P<0.05). Immunization by i.m. injection of TT solution resulted in the lowest sIgA and highest IgG titers (P<0.05) compared with liposomal groups. The results were indicative of good potential of negatively charged liposomes in the induction of mucosal immunity. Coating of liposomes by chitosan, failed to increase both the residence time of liposomes in nasal cavity and systemic responses. Conversely, coated liposomes could not induce the mucosal responses as efficiently as non-coated liposomes. It seems that the coating of liposomes affected their interaction potential with nasal associated lymphoid tissue cells.
PMID: 19699067 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Sustained and specific in vitro inhibition of HIV-1 replication by a protease inhibitor encapsulated in gp120-targeted liposomes.
Antiviral Res. 2009 Nov;84(2):142-9
Authors: Clayton R, Ohagen A, Nicol F, Del Vecchio AM, Jonckers TH, Goethals O, Van Loock M, Michiels L, Grigsby J, Xu Z, Zhang YP, Gutshall LL, Cunningham M, Jiang H, Bola S, Sarisky RT, Hertogs K
Selective delivery of antiretrovirals to human immunodeficiency virus (HIV) infected cells may reduce toxicities associated with long-term highly active antiretroviral therapy (HAART), may improve therapeutic compliance and delay the emergence of resistance. We developed sterically stabilized pegylated liposomes coated with targeting ligands derived from the Fab' fragment of HIV-gp120-directed monoclonal antibody F105, and evaluated these liposomes as vehicles for targeted delivery of a novel HIV-1 protease inhibitor. We demonstrated that the immunoliposomes were selectively taken up by HIV-1-infected cells and localized intracellularly, enabling the establishment of a cytoplasmic reservoir of protease inhibitor. In antiviral experiments, the drug delivered by the immunoliposomes showed greater and longer antiviral activity than comparable concentrations of free drug or drug encapsulated in non-targeted liposomes. In conclusion, by combining a targeting moiety with drug-loaded liposomes, efficient and specific uptake by non-phagocytic HIV-infected cells was facilitated, resulting in drug delivery to infected cells. This approach to targeted delivery of antiretroviral compounds may enable the design of drug regimens for patients that allow increased therapeutic adherence and less toxic treatment of HIV infection.
PMID: 19699239 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Novel graft copolymers enhance in vitro delivery of antisense oligonucleotides in the presence of serum.
J Control Release. 2009 Dec 3;140(2):134-40
Authors: Peddada LY, Harris NK, Devore DI, Roth CM
Antisense technology holds tremendous potential in the research and clinical settings. However, successful delivery of antisense oligodeoxynucleotides (ODNs) to the intracellular site of action requires the passage of many barriers, including survival against extracellular serum nucleases and escape from endolysosomal degradation. Previous work has shown that the effectiveness of antisense delivery by the cationic liposome, dioleoyl-3-trimethylammonium-propane (DOTAP), is enhanced substantially by the incorporation of a pH-sensitive polymer, poly (propylacrylic acid) (PPAA), in serum-free media. To improve this system for application in serum-containing media conditions, PPAA was modified in this work by grafting onto it either poly(ethylene oxide) (PEO) or a more hydrophobic analog, poly (oxyalkylene amine), known as Jeffamine. The ternary formulation of DOTAP/ODN/PPAA-g-Jeffamine resulted in 8-fold increased uptake of fluorescently-labeled ODNs compared to DOTAP/ODN/PPAA and ~80% silencing of green fluorescent protein (GFP) expression in CHO-d1EGFP cells treated in the presence of 10% FBS-containing media. In contrast, the carrier systems that contained PPAA or PPAA-g-PEO failed to display any significant antisense activity in the presence of serum, even though all of the delivery systems displayed moderate to high levels of antisense activity in serum-free conditions. The results reveal that the carrier system with the Jeffamine graft copolymer effectively mediates specific gene silencing in the presence of serum, while the system with the PEO graft copolymer fails to do so. While the pH-dependent lytic functionality of PPAA was found to be lost upon grafting with PEO or Jeffamine, the hydrophobicity of the latter was sufficient to mediate cellular internalization and endosomal escape. Thus, the PPAA-g-Jeffamine copolymers hold substantial promise as agents for controlled therapeutic delivery of antisense oligonucleotides.
PMID: 19699243 [PubMed - indexed for MEDLINE]
]]>View the Original article
Intracellular delivery of bovine lactoferricin's antimicrobial core (RRWQWR) kills T-leukemia cells.
Related Articles
Intracellular delivery of bovine lactoferricin's antimicrobial core (RRWQWR) kills T-leukemia cells.
Biochem Biophys Res Commun. 2009 Oct 30;388(4):736-41
Authors: Richardson A, de Antueno R, Duncan R, Hoskin DW
Bovine lactoferricin (LfcinB) is a cationic antimicrobial peptide with potent cytotoxic activity against cancer cells. The antimicrobial activity of LfcinB resides in its RRWQWR amino acid sequence (referred to here as LfcinB6); however, the anticancer activity of LfcinB6 is not known. Here, we show that free LfcinB6 did not kill T-leukemia or breast cancer cells but LfcinB6 was strongly cytotoxic when delivered to the cytosolic compartment by fusogenic liposomes. LfcinB6 bound weakly to isolated mitochondria but, unlike LfcinB, did not permeabilize mitochondria or cause cytochrome c to be released. Cathepsin B and caspase activity were important for cytotoxicity caused by intracellular LfcinB6 whereas reactive oxygen species were not involved. The mechanism of LfcinB6-induced cytotoxicity is therefore different from that of LfcinB. We suggest that LfcinB6, in combination with a fusogenic liposome delivery system that selectively targets malignant cells, has potential as a novel anticancer agent.
PMID: 19699713 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Nano and microtechnologies for the delivery of oligonucleotides with gene silencing properties.
Molecules. 2009;14(8):2801-23
Authors: De Rosa G, La Rotonda MI
Oligonucleotides (ONs) are synthetic fragments of nucleic acid designed to modulate the expression of target proteins. DNA-based ONs (antisense, antigene, aptamer or decoy) and more recently a new class of RNA-based ONs, the small interfering RNAs (siRNAs), have gained great attention for the treatment of different disease states, such as viral infections, inflammation, diabetes, and cancer. However, the development of therapeutic strategies based on ONs is hampered by their low bioavailability, poor intracellular uptake and rapid degradation in biological fluids. The use of a non-viral carrier can be a powerful tool to overcome these drawbacks. Lipid or polymer-based nanotechnologies can improve biological stability and cellular uptake of ONs, with possibility of tissue and/or cellular targeting. The use of polymeric devices can also produce a prolonged release of the ON, thus reducing the need of frequent administrations. This review summarizes advantages and issues related to the main non-viral vectors used for ON delivery.
PMID: 19701125 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes.
Chem Phys Lipids. 2009 Nov;162(1-2):1-16
Authors: Schroeder A, Kost J, Barenholz Y
Ultrasound is used in many medical applications, such as imaging, blood flow analysis, dentistry, liposuction, tumor and fibroid ablation, and kidney stone disruption. In the past, low frequency ultrasound (LFUS) was the main method to downsize multilamellar (micron range) vesicles into small (nano scale) unilamellar vesicles. Recently, the ability of ultrasound to induce localized and controlled drug release from liposomes, utilizing thermal and/or mechanical effects, has been shown. This review, deals with the interaction of ultrasound with liposomes, focusing mainly on the mechanical mechanism of drug release from liposomes using LFUS. The effects of liposome lipid composition and physicochemical properties, on one hand, and of LFUS parameters, on the other, on liposomal drug release, are addressed. Acoustic cavitation, in which gas bubbles oscillate and collapse in the medium, thereby introducing intense mechanical strains, increases release substantially. We suggest that the mechanism of release may involve formation and collapse of small gas nuclei in the hydrophobic region of the lipid bilayer during exposure to LFUS, thereby inducing the formation of transient pores through which drugs are released. Introducing PEG-lipopolymers to the liposome bilayer enhances responsivity to LFUS, most likely due to absorption of ultrasonic energy by the highly hydrated PEG headgroups. The presence of amphiphiles, such as phospholipids with unsaturated acyl chains, which destabilize the lipid bilayer, also increases liposome susceptibility to LFUS. Application of these principles to design highly LFUS-responsive liposomes is discussed.
PMID: 19703435 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery.
Lab Chip. 2009 Sep 21;9(18):2638-43
Authors: Hsieh AT, Hori N, Massoudi R, Pan PJ, Sasaki H, Lin YA, Lee AP
A novel picolitre incubator based microfluidic system for consistent nonviral gene carrier formulation is presented. A cationic lipid-based carrier is the most attractive nonviral solution for delivering plasmid DNA, shRNA, or drugs for pharmaceutical research and RNAi applications. The size of the cationic lipid and DNA complex (CL-DNA), or the lipoplex, is one of the important variations for consistency of gene transfection. CL-DNA size, in turn, may be controlled by factors such as the cationic lipid and DNA mixing order, mixing rate, and mixture incubation time. The Picolitre Microfluidic Reactor and Incubator (PMRI) system described here is able to control these parameters in order to create homogeneous CL-DNA. Compared with conventional CL-DNA preparation techniques involving hand-shaking or vortexing, the PMRI system demonstrates a greater ability to constantly and uniformly mix cationic lipids and DNA simultaneously. After mixing in the picolitre droplet reactors, the cationic lipid and DNA is incubated within the picolitre incubator to form CL-DNA. The PMRI generates a narrower size distribution band, while also turning the sample loading, mixing and incubation steps into an integrated process enabling the consistent formation of CL-DNA. The coefficient of variation (CV) of transfection efficiency is 0.05 and 0.30 for PMRI-based and conventional methods, respectively. In addition, this paper demonstrates that the gene transfection efficiency of lipoplex created in the PMRI is more reproducible.
PMID: 19704978 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Methods, potentials, and limitations of gene delivery to regenerate central nervous system cells.
Biologics. 2009;3:245-56
Authors: Kumar A, Singh TD, Singh SK, Prakash S
This review evaluates methods, success and limitations of transgenes delivery in central nervous system (CNS). Both viral and nonviral (such as liposome mediated) methods, expression and stability of transgenes have been discussed. The controlled expression and delivery techniques of transgene at the injured or diseased sites have also been discussed. Mifepristone (RU486) and tetracycline-based switch system for controlled expression could be a very useful tool for clinical purposes. Here we emphasized the importance and consequences of viral- and nonviral-mediated transgenes transfer and therapeutic ability along with advantages of controlled expressions.
PMID: 19707413 [PubMed]
]]>View the Original article
Related Articles
Cellular uptake of electron paramagnetic resonance imaging probes through endocytosis of liposomes.
Biochim Biophys Acta. 2009 Oct;1788(10):2301-8
Authors: Burks SR, Barth ED, Halpern HJ, Rosen GM, Kao JP
Electron paramagnetic resonance imaging (EPRI) allows detection and localization of paramagnetic spin probes in vivo and in real time. We have shown that nitroxide spin probes entrapped in the intracellular milieu can be imaged by EPRI. Therefore, with the development of a tumor-targetable vehicle that can efficiently deliver nitroxides into cells, it should be possible to use nitroxide spin probes to label and image cells in a tumor. In this study, we assess the potential of liposomes as a delivery vehicle for imaging probes. We demonstrate that liposomes can stably encapsulate nitroxides at very high concentrations (>100 mM), at which nitroxides exhibit concentration-dependent quenching of their EPR signal-a process analogous to the quenching of fluorescent molecules. The encapsulating liposomes thus appear spectroscopically "dark". When the liposomes are endocytosed and degraded by cells, the encapsulated nitroxides are liberated and diluted into the much larger intracellular volume. The consequent relief of quenching generates a robust intracellular nitroxide signal that can be imaged. We show that through endocytosis of nitroxide-loaded liposomes, CV1 cells can achieve intracellular nitroxide concentrations of approximately 1 mM. By using tissue phantom models, we verify that this concentration is more than sufficient for in vivo EPR imaging.
PMID: 19712666 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Immune response and prophylactic efficacy of smegmosomes in a hamster model of leptospirosis.
Vaccine. 2009 Oct 19;27(44):6129-36
Authors: Faisal SM, Yan W, McDonough SP, Mohammed HO, Divers TJ, Chang YF
Leptospirosis is an important zoonotic disease worldwide. Subunit vaccines are an attractive intervention strategy against this disease, but potent, non-toxic adjuvants are necessary components to any effective vaccine. Among various adjuvant candidates, liposomes have garnered recent attention for their capacity as carriers of vaccines. In the present study we prepared novel liposomes using total polar lipids from the nonpathogenic bacterium, Mycobacterium smegmatis (designated smegmosomes). The potential for smegmosomes as a vaccine delivery/adjuvant system was evaluated with novel leptospira protective antigens (Lp0607, Lp1118, Lp1454) and compared with conventional aluminum hydroxide adjuvant (alum) in a hamster model of leptospirosis. Four-week-old hamsters were immunized subcutaneously twice at three weeks intervals and either bled at various time points to evaluate antibody responses, sacrificed to isolate splenocytes for lymphocyte proliferation and cytokine profiles in response to recall antigen, or challenged intraperitoneally with a modified lethal dose (10X MLD(50)) of virulent Leptospira interrogans serovar Pomona. Our results demonstrate that smegmosomes carrying antigens are better adjuvants than alum as revealed by enhanced and long term antibody response, lymphocyte proliferation and significant enhancement in both Th1 (IFN-gamma) and Th2 (IL-4, IL-10) cytokine production. Additionally, smegmosomes were found to induce memory responses that are significantly higher than those of alum. Above all, smegmosomes were observed to impart a significantly higher level of protection than alum as revealed by enhanced survival, reduced histopathological lesions and bacterial load in vital organs. Taken together, the data of the present study suggests that smegmosomes will serve well as a promising delivery vehicle/adjuvant system that can induce both Th1 and Th2 type immune responses and provide a novel tool in development of improved vaccines for leptospirosis and other infectious diseases.
PMID: 19715780 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
An imaging-driven model for liposomal stability and circulation.
Mol Pharm. 2010 Feb 1;7(1):12-21
Authors: Qin S, Seo JW, Zhang H, Qi J, Curry FR, Ferrara KW
Simultaneous labeling of the drug compartment and shell of delivery vehicles with optical and positron emission tomography (PET) probes is developed and employed to inform a hybrid physiologically based pharmacokinetic model. Based on time-dependent estimates of the concentration of these tracers within the blood pool, reticuloendothelial system (RES) and tumor interstitium, we compare the stability and circulation of long-circulating and temperature-sensitive liposomes. We find that rates of transport to the RES for long-circulating and temperature-sensitive particles are 0.046 and 0.19 h(-1), respectively. Without the application of exogenous heat, the rates of release from the long-circulating and temperature-sensitive particles circulating within the blood pool are 0.003 and 0.2 h(-1), respectively. Prolonged lifetime in circulation and slow drug release from liposomes result in a significantly greater drug area under the curve for the long-circulating particles. Future studies will couple these intrinsic parameters with exogenous heat-based release. Finally, we develop a transport constant for the transport of liposomes from the blood pool to the tumor interstitium, which is on the order of 0.01 h(-1) for the Met-1 tumor system.
PMID: 19621944 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
The effect of aminoglycoside antibiotics on the thermodynamic properties of liposomal vesicles.
J Liposome Res. 2009 Jul 21;
Authors: Jia Y, Joly H, Leek DM, Demetzos C, Omri A
Liposomes are ideal drug-delivery systems because they can alter the pharmacokinetic characteristics and biodistribution profile of the incorporated bioactive molecule. The effect of the aminoglycoside antibiotics, gentamicin (GN), tobramycin (TOB), and amikacin (AMI), on the thermodynamic properties of multilamellar vesicles composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied by using differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), and (31)P nuclear magnetic resonance (NMR) spectroscopy. The relationship between the structure of aminoglycoside antibiotics and their effect on the physical properties of the liposomal bilayers was investigated. The incorporation of the drugs was achieved and an osmotic gradient created by controlling the mole ratio of the drug inside to that outside of the DPPC vesicles so that [drug(inside DPPC)]/[drug(outside DPPC)] was 1:0, 1:0.2, 1:1, or 1:2.5. Incorporation of the drugs into liposomes caused the T(m) to shift to a higher temperature and the deltaH(m) and deltaT(1/2) values to decrease. The 2A(max) and the order parameter (S), obtained from the EPR spectra, indicated that the fluidity of the liposomal membrane was affected by the type of drug and by the concentration used; GN and TOB decreased the fluidity and disturbed chain packing at mole ratios of [drug(inside DPPC)]/[drug(outside DPPC)] ranging from 1:0 to 1:0.2, while AMI increased the fluidity and disrupted chain packing at an osmotic gradient of 1:2.5. In conclusion, the molecular organization and thermotropic properties of the multilamellar DPPC vesicles were dependent on the osmotic gradient and structure of the aminoglycoside.
PMID: 19621992 [PubMed - as supplied by publisher]
]]>View the Original article
Related Articles
Niosomes in sustained and targeted drug delivery: some recent advances.
J Drug Target. 2009 Jul 6;
Authors: Azeem A, Anwer MK, Talegaonkar S
Niosomes represent an emerging class of novel vesicular systems. They are composed of nonionic surfactants which are biodegradable and relatively nontoxic. They were developed as stable and inexpensive alternatives to liposomes. Since their early introduction to cosmetic industry their role has diversified to other application areas. They are now being ardently explored as potential carriers for sustained and targeted drug delivery. In addition to conventional, oral, and parenteral routes, they are amenable to be delivered by ocular, transdermal, vaginal, and inhalation routes. Delivery of biotechnological products including vaccine delivery with niosomes is also an interesting and promising research area. The introduction of provesicular approach in the form of proniosomes has further increased the relevance of these systems. More concerted research efforts, however, are still required to realize the full potential of these novel systems. This review considers the current status and explores the potential of niosomes in drug delivery with special attention to their role in drug targeting. Their methods of preparation, formulation aspects, advantages, limitations, and applications are also discussed.
PMID: 19622021 [PubMed - as supplied by publisher]
]]>View the Original article
Related Articles
Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved.
Mol Ther. 2010 Jan;18(1):101-8
Authors: Lentacker I, Geers B, Demeester J, De Smedt SC, Sanders NN
Drug delivery with microbubbles and ultrasound is gaining more and more attention in the drug delivery field due to its noninvasiveness, local applicability, and proven safety in ultrasonic imaging techniques. In this article, we tried to improve the cytotoxicity of doxorubicin (DOX)-containing liposomes by preparing DOX-liposome-containing microbubbles for drug delivery with therapeutic ultrasound. In this way, the DOX release and uptake can be restricted to ultrasound-treated areas. Compared to DOX-liposomes, DOX-loaded microbubbles killed at least two times more melanoma cells after exposure to ultrasound. After treatment of the melanoma cells with DOX-liposome-loaded microbubbles and ultrasound, DOX was mainly present in the nuclei of the cancer cells, whereas it was mainly detected in the cytoplasm of cells treated with DOX-liposomes. Exposure of cells to DOX-liposome-loaded microbubbles and ultrasound caused an almost instantaneous cellular entry of the DOX. At least two mechanisms were identified that explain the fast uptake of DOX and the superior cell killing of DOX-liposome-loaded microbubbles and ultrasound. First, exposure of DOX-liposome-loaded microbubbles to ultrasound results in the release of free DOX that is more cytotoxic than DOX-liposomes. Second, the cellular entry of the released DOX is facilitated due to sonoporation of the cell membranes. The in vitro results shown in this article indicate that DOX-liposome-loaded microbubbles could be a very interesting tool to obtain an efficient ultrasound-controlled DOX delivery in vivo.
PMID: 19623162 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Reversible cell-specific drug delivery with aptamer-functionalized liposomes.
Angew Chem Int Ed Engl. 2009;48(35):6494-8
Authors: Cao Z, Tong R, Mishra A, Xu W, Wong GC, Cheng J, Lu Y
PMID: 19623590 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Fatty acids are rapidly delivered to and extracted from membranes by methyl-beta-cyclodextrin.
J Lipid Res. 2010 Jan;51(1):120-31
Authors: Brunaldi K, Huang N, Hamilton JA
We performed detailed biophysical studies of transfer of long-chain fatty acids (FAs) from methyl-beta-CD (MBCD) to model membranes (egg-PC vesicles) and cells and the extraction of FA from membranes by MBCD. We used i) fluorescein phosphatidylethanolamine to detect transfer of FA anions arriving in the outer membrane leaflet; ii) entrapped pH dyes to measure pH changes after FA diffusion (flip-flop) across the lipid bilayer; and iii) soluble fluorescent-labeled FA binding protein to measure the concentration of unbound FA in water. FA dissociated from MBCD, bound to the membrane, and underwent flip-flop within milliseconds. In the presence of vesicles, MBCD maintained the aqueous concentration of unbound FA at low levels comparable to those measured with albumin. In studies with cells, addition of oleic acid (OA) complexed with MBCD yielded rapid (seconds) dose-dependent OA transport into 3T3-L1 preadipocytes and HepG2 cells. MBCD extracted OA from cells and model membranes rapidly at concentrations exceeding those required for OA delivery but much lower than concentrations commonly used for extracting cholesterol. Compared with albumin, MBCD can transfer its entire FA load and is less likely to extract cell nutrients and to introduce impurities.
PMID: 19625735 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Self-organization of synthetic cholesteryl oligoethyleneglycol glycosides in water.
Langmuir. 2009 Aug 18;25(16):9424-31
Authors: Faivre V, Bardonnet PL, Boullanger P, Amenitsch H, Ollivon M, Falson F
Lectin-sugar recognition systems are of interest in the pharmaceutical field, especially for the development of drug carriers, tailored for selective delivery. This paper deals with the anhydrous and aqueous self-organization properties of a synthetic cholesteryl oligoethyleneglycol glycoside with the aim of their incorporation in liposomes. Successive phases (lamellar, R3m, Im3m, micelles) have been described depending on water content and temperature. As a result of the presence of sugar residues and their hydration ability, this glycolipid shows a large range of packing parameter with increasing water content. However, because of oligoethyleneglycol spacer, a slight dehydration has been observed with increasing temperature from 20 to 60 degrees C.
PMID: 19627161 [PubMed - indexed for MEDLINE]
]]>View the Original article
Related Articles
Delivery of antioxidant enzyme genes to protect against ischemia/reperfusion-induced injury to retinal microvasculature.
Invest Ophthalmol Vis Sci. 2009 Dec;50(12):5587-95
Authors: Chen B, Caballero S, Seo S, Grant MB, Lewin AS
PURPOSE: Retinal ischemia/reperfusion (I/R) injury results in the generation of reactive oxygen species (ROS). The aim of this study was to investigate whether delivery of the manganese superoxide dismutase gene (SOD2) or the catalase gene (CAT) could rescue the retinal vascular damage induced by I/R in mice. METHODS: I/R injury to the retina was induced in mice by elevating intraocular pressure for 2 hours, and reperfusion was established immediately afterward. One eye of each mouse was pretreated with plasmids encoding manganese superoxide dismutase or catalase complexed with cationic liposomes and delivered by intravitreous injection 48 hours before initiation of the procedure. Superoxide ion, hydrogen peroxide, and 4-hydroxynonenal (4-HNE) protein modifications were measured by fluorescence staining, immunohistochemistry, and Western blot analysis 1 day after the I/R injury. At 7 days after injury, retinal vascular cell apoptosis and acellular capillaries were quantitated. RESULTS: Superoxide ion, hydrogen peroxide, and 4-HNE protein modifications increased at 24 hours after I/R injury. Administration of plasmids encoding SOD2 or CAT significantly reduced levels of superoxide ion, hydrogen peroxide, and 4-HNE. Retinal vascular cell apoptosis and acellular capillary numbers increased greatly by 7 days after the injury. Delivery of SOD2 or CAT inhibited the I/R-induced apoptosis of retinal vascular cell and retinal capillary degeneration. CONCLUSIONS: Delivery of antioxidant genes inhibited I/R-induced retinal capillary degeneration, apoptosis of vascular cells, and ROS production, suggesting that antioxidant gene therapy might be a treatment for I/R-related disease.
PMID: 19628743 [PubMed - indexed for MEDLINE]
]]>View the Original article